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Abstract
Purpose of Review Bacteria were first conceived as potential cancer therapeutics in the nineteenth century. Since then, a wide
range of advancements has been made especially in the advent of microbial engineering, particularly in the Salmonella
Typhimurium serovar. Recent developments include attenuated profiles of Salmonella for safe delivery, as well as genetic
engineering for targeting to cancerous tissue and improved efficacy for antitumor effects. This review provides a summary of
recent advances in the field of Salmonella-mediated cancer therapy and implications for further clinical testing.
Recent Findings A focus of recent Salmonella-mediated cancer therapies is genetic engineering of the bacteria for optimized
tumor targeting and anticancer effects. Careful design has led to the use of attenuated Salmonella as drug delivery vehicles and
tumor-targeting therapeutics with excellent safety and therapeutic efficacy in countless murine tumor models. Moreover,
Salmonella has the potential for use as imaging and diagnostic tools that would improve patient prognosis through early
awareness.
Summary Here, we have detailed recent advances in the use of Salmonella as a therapy to combat cancer. Continued innovative
and novel discovery in this field of study will yield a promising future for the use of Salmonella-mediated cancer therapies in
cancer care.
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Introduction

Advances in cancer research such as detection and effective
treatments are unquestionable. Between November 2016 and
October 2017, there had been 18 new cancer therapy devel-
opments, which more than doubles the previous year
timeframes in 2015 and 2016 [1]. Despite this, cancer inci-
dence is predicted to continue on a steady increase due to the
growing world population and elongated average lifespan,
causing an even greater need for cancer research innovation.

Now more than ever, novel therapeutics and treatment strate-
gies to combat cancer are necessary. Bacterial-mediated can-
cer therapies have the potential to meet this need by
complementing or, in some cases, overcoming negative side
effects of current cancer treatment regimens including surgery,
radiation, chemotherapy, and immunotherapy [2].

A Brief History of Bacterial-Based Cancer Therapy

The phenomenon of bacterial-mediated cancer therapy was
first observed in 1868 by the German surgeon Dr. Wilhelm
Busch but was later best described by Dr. William Coley, an
American bone sarcoma surgeon [3]. In 1891, Dr. Coley at-
tributed the clearance of a neck sarcoma and long-term sur-
vival of the patient to an erysipelas infection, the causative
agent being Streptococcus pyogenes [4]. Due to toxicity,
Coley heat-inactivated a bacterial mix of the S. pyogenes
and Serratia marcescens, which became known as “Coley’s
toxins.” A retrospective analysis on 1000 of Coley’s cases
found that nearly half were complete regression [5]. Today,
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with resistance and reduced susceptibility to common thera-
peutic options on the rise, bacterial-mediated cancer therapies
have experienced a re-emergence in the field. The advantages
of using microbes to combat cancer include the self-
propagation of live bacterial agents, specificity to cancerous
tissue over healthy tissue, and redirecting the host defenses to
contest cancer via immunostimulation. Here, we present a
summary of recent research strides that have taken place to-
wards the use of Salmonella Typhimurium as an anticancer
therapy. This review serves to summarize updates in the field
and provide insight to future work and areas of focus.

Key Features of Salmonella Typhimurium
as an Anticancer Agent

Our Ally Against Cancer

As one article cleverly coined “From spinach scare to cancer
care” [6], Salmonella Typhimurium has not always been
viewed as our friend. S. Typhimurium is a classic gastrointes-
tinal pathogen found in undercooked food products such as
chicken and eggs. Largely due to microbial genetic engineer-
ing, Salmonella can also be employed to battle cancer. Safe
delivery with minimal toxic effects can be accomplished due
to attenuation of S. Typhimurium. Moreover, S. Typhimurium
can colonize the tumormicroenvironment and elicit anticancer
effects. The ways in which S. Typhimurium intrinsically at-
tacks tumors selectively over normal host tissue include the
following: stimulating non-specific immune responses
through accumulation at the tumor site, preventing cancer cell
growth through nutrient uptake, and penetrating necrotic tu-
mor regions that are least drug-accessible [7]. Additionally,
because S. Typhimurium is a facultative anaerobe, there is a
wide variety of cancer types the bacterial species is able to
infect, for example, colonization of aerobic microenviron-
ments, such as highly vascularized tumors, and the anaerobic
microenvironment of poorly vascularized tumors [3]. S.
Typhimurium is able to survive and grow in a diverse range
of pH conditions, like areas found in the tumor microenviron-
ment [8]. Low-pH areas in the tumor microenvironment im-
pair cytotoxic immune cell activity and cytokine secretion,
consequently inhibiting host defenses [8]. The bacterial cells
therefore have the capacity to exploit acidic pH areas and
redirect host immune cells to the tumor site.

Engineered S. Typhimurium Strains for Anticancer
Effects

VNP20009

VNP20009 was engineered by Low et al. at Yale University to
target cancer. The strain was developed from the pathogenic S.

Typhimurium 14028s [9] through chemical and UVmutagen-
esis. Two targeted deletions resulting in attenuation by modi-
fication of lipid A (msbB−) and a dependence on purine sup-
plementation (purM−) are defining genetic characteristics of
the strain. Positive preclinical results indicating antitumor ac-
tivity of VNP20009 culminated in a 2001 phase 1 clinical trial
towards patients with non-responsive metastatic melanoma or
renal cell carcinoma. Although anticancer effects were not
observed, safe delivery of VNP20009 to human patients was
achieved [10]. The focus of research has since been to retain
the safety profile of attenuated Salmonella, while eliciting
anticancer effects within the tumor and/or metastatic foci.

Recently, it was discovered that VNP20009 harbors several
other genetic features including 50 non-synonymous SNPs
[11] and a 108-kb Suwwan deletion [11, 12], the implications
of which mostly remain unknown with respect to tumor-
targeting efficiency of the strain, except for the gene cheY,
which contains a SNP rendering the strain non-chemotactic
[13].We evaluated VNP20009 cheY+ in vitro and discovered a
69% restoration of chemotaxis compared to the parent strain,
which we discovered at least in part to be due to the msbB
deletion. We then compared tumor colonization and antican-
cer effects of VNP20009 and VNP20009 cheY+ in a 4T1
mouse mammary carcinoma model and found no significant
differences between tumor colonization or anticancer efficacy
[14]. VNP20009 has been assessed in several murine tumor
models, including melanoma, breast cancer, colon cancer, and
canine spontaneous neoplasia [15, 16].

A1/A1-R

The A1-R strain was developed at the University of California
at San Diego by first mutagenizing S. Typhimurium 14028s
with nitrosoguanidine. Then, the leucine and arginine auxo-
troph A1 was chosen due to selective growth in neoplastic
tissues over normal tissue [17]. The strain was then further
improved for tumor targeting and reduced toxicity through
passaging in nude mice bearing transplanted HT-29 colon tu-
mors resulting in the isolation of A1-R [18]. The efficacy of
strain A1-R has been evaluated in several orthotopic nude
mouse models of prostate [19], breast [18, 20], pancreatic
[21, 22], and ovarian cancer [23], as well as sarcomas [24]
and gliomas [25, 26]. Moreover, A1-R has been effective in
metastatic models of cancer [27, 28]. Finally, patient-derived
orthotopic xenograft (PDOX) models have been developed,
for which A1-R was tested as effective [29].

ΔppGpp

An avirulent derivative of 14028s was established that is de-
fective in synthesis of the global regulator of gene expression,
ppGpp, due to deletions of relA and spoT [30]. The resulting
strain, ΔppGpp, is avirulent, presenting LD50 values
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approximately 105 higher than wild-type Salmonella after oral
or intraperitoneal inoculation [30]. In addition to tumor sup-
pression in a CT26 mouse colon cancer model [31],ΔppGpp
has been used as a vector for tumor-specific delivery of ther-
apeutics. The engineered Salmonella have been successfully
implemented as a theranostic agent, expressing an imaging
reporter gene, Renilla luciferase [32, 33]. Additionally,
tumoricidal agents such as cytolysin [32, 34] and Noxa [35]
have been delivered by ΔppGpp.

Other Strains

Several other strains of S. Typhimurium (Table 1) were con-
structed for the purposes of tumor targeting and eradication,
including BRD509/BRD509E [36, 37], χ4550 [38],
CRC2631 [7], LH340 [39–41], LVR01 [42], MvP728
[43–45], RE88 [46–48], S634/S636 [49], SA186 [50],
SB824 [51], SL3261 [52, 53], SL7207 [54–57], and YB1
[58, 59].

Intrinsic Immunostimulatory Components

The immunosuppressive environment of a growing tumor
protects the tissue from immune attack [60, 61]. Some bacte-
rial components are intrinsically immunostimulative, termed
pathogen-associated molecular patterns (PAMPs). S.
Typhimurium PAMPs include flagellin, lipopolysaccharide
(LPS), and CpG-rich DNA, which can be recognized by
membrane-bound toll-like receptors (TLRs) expressed by in-
nate immune cells. In short, PAMPs are involved in the acti-
vation of innate and adaptive immune responses to differenti-
ate foreign pathogen components from self. For example,
TLR5 activation by S. Typhimurium flagellin has been shown
to elicit potent antitumor activity in a mouse xenograft model
of human breast cancer [62].

The expression of proinflammatory cytokines such as IL-
1β [31] and TNF-α by immune cells has been triggered by
systemic S. Typhimurium. TNF-α, in addition to other proin-
flammatory cytokines [63], has been found to play an impor-
tant role in the initial phase of tumor colonization, due to
increased tumor vascular disruption and hemorrhage [64].
Induction of TNF-α is a careful balancing act between im-
mune stimulation and septicemia in Salmonella strain con-
struction. Strongly attenuated bacteria such as VNP20009
have an efficacious safety profile in animals and humans,
critical for use as a therapy for cancer patients [10], but may
strongly reduce the favorable immunostimulatory, and there-
fore tumor clearance, effects. To address this, Frahm et al.
constructed conditionally attenuated Salmonella strains by de-
leting genes involved in LPS synthesis, such as rfaD and rfaG,
and then complementing the resulting mutants by chromo-
somally integrated copies of these genes under control of an
arabinose-inducible promoter. This resulted in an effective

balance of attenuation and therapeutic benefit, in which the
conditionally attenuated rfaD strain delayed growth of CT26
and RenCa tumors in vivo [65].

In addition to eliciting a proinflammatory response, S.
Typhimurium also influences the downregulation of immuno-
suppressive factors. Kaimala et al. found that administration
of attenuated Salmonella led to increased accumulation and
functional maturation of intratumoral myeloid cells, with de-
creased expression of immunosuppressive genes including ar-
ginase-1, IL-4, TGF-β, and VEGF [66]. High expression of
the 2,3-dioxygenase 1 (IDO) has been found in many tumors
and is associated with immune tolerance by indirectly causing
T cell apoptosis via an increase in kynurenine concentration
[67]. S. Typhimurium inhibits IDO expression in B16F10 and
4T1 tumor cells, leading to higher T cell viability and survival
[67]. Overall, S. Typhimurium-mediated inhibition of immune
evasion is a promising strategy for antitumor therapy (Fig. 1).

The Role of Motility and Chemotaxis in Tumor
Targeting of S. Typhimurium

Harnessing bacterial motility and chemotaxis is an appealing
approach to actively direct S. Typhimurium towards cancer-
ous tissue in the body and achieve distribution within the
tumor. Motility has been reported as critical for in vitro tumor
colonization [68]. Moreover, the importance of individual
chemoreceptors for effective tumor localization in vitro has
been described for SL1344 [69], where both chemotaxis and
proliferation were found to be essential for bacterial accumu-
lation of tumor spheroids [70]. VNP20009 lacking the Trg
receptor localizes in vivo within regions of the tumor that
are quiescent, which is a cellular, reversibly non-replicating
state [71]. Using high-throughput screening of a S.
Typhimurium gene deletion mutant library, it was presented
that motility, chemotaxis, and the ethanolamine metabolic
pathway confer an advantage in tumor colonization [72]. In
contrast, using SL1344 mutants ΔfliGHI and ΔcheY in com-
parison to wild type, motility, and chemotaxis was found to be
immaterial for tumor colonization in mice 24 h after adminis-
tration [73]. Our group has previously shown that in the 4T1
aggressive model of mouse mammary carcinoma, VNP20009
and VNP20009 cheY+ do not significantly differ in influenc-
ing primary tumor size and moreover have no effect on the
number of pulmonary metastases or bacterial colonization of
the primary tumor [14].

Overall, there is a discrepancy in the contribution of che-
motaxis and motility on tumor colonization and eradication,
likely due to several differences in experimental parameters
including S. Typhimurium strain (VNP20009, VNP20009
cheY+, SL1344), cancerous cell line (mouse mammary carci-
noma 4T1, human colorectal adenocarcinoma LS174T, mouse
colon carcinoma CT26), in vitro and in vivo modeling
(cylindroids, microfluidic tumor in chip devices, orthotopic
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syngeneic model, subcutaneous cancer cell injection), time-
lines ranging from hours to weeks, and mode of Salmonella
delivery to the host (intravenous, intraperitoneal, intratumoral
injection).

Engineered S. Typhimurium for Cancer
Therapy

Anticancer Therapeutic Delivery

S. Typhimurium strains are being utilized as live delivery ve-
hicles, made to express various anticancer therapeutics includ-
ing cytokines, cytotoxic agents, regulatory molecules, tumor-
associated antigens or antibodies, prodrug enzymes, and ge-
netic material used as DNAvaccines or for RNA interference
(Fig. 2). Controlled release of therapeutic agents is imperative
for continued safety and efficacy. For example, S.
Typhimurium promoters and their respective inducing mole-
cules used for the expression of various therapeutics include
the following: pBAD, inducer L-arabinose; pTet, inducer tet-
racycline; RecA, inducer radiation; quorum sensing, inducer
bacterial density; and hypoxia-inducible promoters induced

by low-oxygen concentrations [74]. Other strategies utilize
the Salmonella type three secretion system (T3SS) allowing
for efficient delivery of drugs via a molecular needle directly
into the cytosol of cancerous cells. Finally, the facultative
intracellular lifestyle of Salmonella has allowed for its use as
a delivery system of a variety of cancer therapeutics, including
short hairpin RNAs (shRNAs) for RNA interference that, up-
on entry of the eukaryotic cell, can dramatically alter cellular
functions via gene silencing [16]. While examples of
engineered Salmonella for cancer therapy are below, a detailed
list is provided in Table 2.

Cytokines

S. Typhimurium has been engineered to deliver immunocom-
petent cytokines that can induce activation of immune cells
and killing of tumor cells. Specifically, S. Typhimurium pro-
duction of IL-2 under the control of the nirB promoter pro-
moted an antitumor and pro-apoptotic intratumoral response
[36]. IL-18, which stimulates NK cells and T cells to release
IFN-γ, was secreted by VNP20009 under the control of the
ompC promoter, inhibiting the growth of primary subcutane-
ous CT26 colon carcinoma as well as D2F2 breast carcinoma

Table 1 Salmonella Typhimurium strains used as anticancer agents

Name Genotype Description References

VNP20009 msbB−, purM− Chemical/UV mutagenesis; targeted deletions of msbB, resulting in
a lipid A modification, and purM, resulting in purine auxotrophy.
Selected for hyperinvasive trait towards B16F10 cells in vitro.

[9, 10, 14, 15, 103, 127–130]

A1/A1-R leu−/arg− Chemical mutagenesis; selected for leucine and arginine auxotroph
(A1). Passaged and isolated from HT-29 colon tumors in vivo
(A1-R).

[17–19, 21, 24, 25, 131–139]

ΔppGpp/SHJ2037 relA−, spoT− Deletions of relA and spoT resulting in a lack of ppGpp production,
a global regulator.

[31, 32, 34, 35, 81, 90, 140–143]

BRD509/BRD509E aroA−, aroD− Dependent on aromatic compounds for growth. [36, 37, 144–148]

χ4550 cya−, crp−, asd− Tn mutagenesis to remove adenylate cyclase (cya), cyclin adenosine
monophosphate receptor protein (crp), and aspartate semi-aldehyde
dehydrogenase (asd).

[149, 150]

CRC2631 aroA−, thyA−, rfaH− LPS-deficient (rfaH) and auxotrophic for amino acids (aroA) and
thymine (thyA).

[7, 151, 152]

LH340 phoP−, phoQ− Lacking regulation of acid phosphatase synthesis, resulting in reduced
survival in macrophages.

[39–41]

LVR01 aroC− Dependent on aromatic compounds for growth. [42, 153]

MvP728 purD−, htrA− Dependent on purine supplementation (purD) and lacking heat-shock
protein induction (htrA).

[43, 45]

RE88 aroA−, dam− Lacking DNA adenine methylase (dam) and dependent on aromatic
compounds for growth.

48[46–48]

SA186 znuABC− Deletion of the zinc transporter operon, conferring reduced virulence
but maintaining stimulation of protective immunity.

[50, 154]

SL3261 aroA− Dependent on aromatic compounds for growth. [53, 79, 80, 100, 155–160]

SL7207 aroA− Dependent on aromatic compounds for growth. [57, 104, 161–164]

YB1 asd−, aroA− Essential gene, asd, under control of a hypoxia-inducible promoter
and dependent on aromatic compounds for growth.

[58, 59, 118, 165]

S634/S636 pagL−, pagP−, lpxR−,
arnT−, eptA−,
lpxT−, aroA−

Aromatic compounds auxotroph and several lipid A modifications. [49]
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pulmonary metastases [75]. In a similar manner, Loeffler et al.
have demonstrated the use of S. Typhimurium expressing che-
mokine CCL21 [76] and the cytokine LIGHT [77], resulting
in antitumor activity dependent on CD4- and CD8-expressing
cells. S. Typhimurium has also been used as a vector for cy-
tokine gene therapy. Delivery of a eukaryotic expression plas-
mid producing the IL-2 cytokine prolonged survival of mice
transplanted with hepatoma cell tumors [78]. Moreover,
Salmonella has delivered IL-4 and IL-18 via eukaryotic ex-
pression vectors, mediating an IFN-γ response and increasing
survival of melanoma bearing mice [79].

Cytotoxins

Cytotoxic proteins are highly effective at mammalian cell kill-
ing and must be kept under tight control so as to not elicit
adverse effects on healthy tissue [32, 34, 80]. Pore-forming
cytolysins such as ClyA and HlyE delivered by S.
Typhimurium have been shown to result in cancer cell killing
and tumor clearance. Bacterial-borne HlyE under the control
of a hypoxia-inducible promoter (FF+20*) was expressed on-
ly in hypoxic regions of murine mammary tumors [80].
Similarly, S. Typhimurium has been engineered by Min and
colleagues to produce the cytotoxin ClyA under the control of
the PBAD promoter [81]. Once the tumors have been

colonized, L-arabinose can be intraperitoneally administered
to activate expression of the cytotoxin and enhance tumor
suppression [81]. Strain ΔppGpp expressing ClyA under the
control of a tetR-regulated promoter was evaluated in rat ad-
vanced glioma, where the strain induced cancer cell apoptosis
and lead to prolonged survival of the rats [82]. Cytotoxin
delivery by S. Typhimurium includes secreted tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) under con-
trol of the radiation-inducible RecA promoter [83] and the
hypoxia-induced nirB promoter, the latter causing melanoma
apoptosis and reduction of tumor growth in melanoma-
bearing mice [84]. Attenuated strains were engineered to ex-
press the diphtheria toxin A (DTA) chain protein in the 4T1
tumor microenvironment, resulting in significantly lower tu-
mor volumes and 100% survival of animals through the
course of the study [85]. S. Typhimurium has been designed
to secrete chimeric Pseudomonas exotoxin A (ToxA) that se-
lectively kills epidermal growth factor receptor (EGFR)-ex-
pressing tumor cells in vitro. EGFR is known to be
overexpressed in neoplasias such as breast, colon, and
lung prostate cancers, among others [86]. Other examples
of successful tumor therapy by Salmonella cytotoxin de-
livery includes the expression of apoptin, an apoptosis-
inducing small protein [87], and of FasL, the proapoptotic
cytokine Fas ligand [88].

Fig. 1 Intrinsic immunogenic
components of Salmonella
Typhimurium. Upon introduction
of attenuated Salmonella in vivo,
pathogen-associated molecular
patterns (PAMPs) including
flagellin, CpG-rich DNA, and
lipopolysaccharide (LPS) are
recognized by TLRs and elicit an
immune response.
Proinflammatory cytokines, such
as IL-1β and TNF-α, are
increasingly produced by the
host, while immunosuppressive
factors such as IL-4 and TGF-β
exhibit reduced production
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Regulatory Molecules

S. Typhimurium can be modified to regulate and inhibit an-
giogenesis as well as promote cancer cell apoptosis. Using the
plasmid-bacteria balanced-lethal system [89], strain S634 de-
livered endostatin, an antiangiogenic agent [49]. In another
study, the T3SS protein SopA was fused with endostatin for
efficient tumor suppression and induction of severed necrosis
in CT26 colon cancer [56]. Through controlled expression, the
anticancer protein L-asparaginase demonstrated antitumor ef-
ficacy towards mice-bearing MC38, 4T1, and AsPC-1 tumors
[90]. Under the hypoxia-induced nirB promoter, VNP20009
has been engineered to express Fas-associated protein with
death domain (FADD), an adaptor protein transmitting apo-
ptotic signals [91]. FADD-expressing VNP20009 suppressed
B16F10 tumor growth and induced apoptosis of tumor cells
by activating the caspase-dependent apoptotic pathway [91].
Attenuated S. Typhimurium has been used to deliver therapeu-
tic cargo in the form of the mitochondrial-targeting domain
(MTD) belonging to Noxa, a mediator of apoptosis induction,
in the presence of mitochondrial damage. MTD fused to a
novel cell-penetrating peptide (CPP) for facilitated entry was
delivered to tumor cells resulting in antitumor effects towards
mice-bearing CT26 tumors [35]. The entire system, including

timed cell lysis and control of MTD-CPP expression, was
under the control of the PBAD promoter activated by L-
arabinose [35]. VNP20009 recently has been engineered to
deliver DNase I, a nuclease that cleaves single- and
double-stranded DNA, via an eukaryotic expression vec-
tor [92]. VNP20009-DNase I subcutaneously adminis-
tered with the anti-inflammatory agent triptolide led to
enhanced apoptosis of B16F10 cells in vitro and sup-
pressed tumor volume in vivo [92].

Vaccine Vectors

Bacterial-mediated vaccination is a process by which bacteria
deliver tumor antigens to the host, either directly or via ther-
apeutic plasmids, helping to prime a T cell response against
the cancer-expressed targets [93]. This leads to the induction
of an immune response against the tumor and effective clear-
ance. For example, the gene MTDH/AEG-1 encoding a cell
surface protein with a lung-homing domain is overexpressed
in more than 40% of breast cancer patients and promotes lung
metastasis [48]. Upon delivery of MTDH/AEG-1 by attenuat-
ed S. Typhimurium, chemosensitivity to doxorubicin was in-
creased and breast cancer lung metastasis inhibited in vivo
[48]. Using the T3SS of strain MvP728, Xu et al.

Fig. 2 Strategies for increased
therapeutic efficiency of
Salmonella Typhimurium. After
administration, Salmonella can
directly deliver cytokines and
cytotoxins to elicit anticancer
effects, act as a vaccine vector
prompting eukaryotic gene
expression, and perform RNA
interference for tumor gene
silencing
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demonstrated that survivin, an oncoprotein overexpressed in
most cancers, could be delivered orally by a Salmonella-based
vector into the cytosol of antigen-presenting cells [44]. This
delivery led to therapeutic vaccination and potent antitumor
activity in a CT26 mouse model [44]. Survivin has also been
successfully employed for DNA-based vaccination by
SL7207 and RE88 towards murine neuroblastoma [57] and
murine D121 lung cancer in conjunction with chemokine
CCL21 expression [46]. Other targets of Salmonella-based
DNA vaccination include 4-1BBL, a ligand enhancing T cell
immunity [53], and Flk-1, a vascular endothelial growth factor
(VEGF) receptor 2 [94–96].

RNA Interference

RNA interference (RNAi) is a mechanism of transcriptional
regulation in the eukaryotic cell used for gene silencing. This
mechanism can be exploited for cancer therapy, specifically to
knock down mutated genes or in cancers where protein over-
expression is driving tumorigenesis [97]. A current limitation
in the clinical application of RNAi-based drugs is the lack of
an effective delivery system [98]. S. Typhimurium is an in-
triguing delivery vehicle for RNAi therapy due to its tumor
targeting and facultative intracellular nature. There are two
mechanisms of bacterial-mediated RNAi delivery targeting
an oncogene or tumor-expressed factor, namely delivery of
plasmid-encoding shRNAs and expression of shRNAs to in-
duce RNAi [93].

With S. Typhimurium expressing signal transducer and ac-
tivator of transcription 3 (Stat3)-specific siRNAs against pros-
tate tumor-bearing C57BL6 mice, tumor growth was signifi-
cantly inhibited and the metastatic sites reduced [39]. Tian
et al. applied S. Typhimurium as a vector to deliver short
hairpin RNA (shRNA) targeting Stat3 in hepatocellular carci-
noma, markedly delaying and reducing tumors in mice [99]. S.
Typhimurium has delivered shRNA expressed from a plasmid
to target Bcl-2 (B cell lymphoma-2). The gene was signifi-
cantly silenced, delaying melanoma cell tumor growth and
prolonging animal survival [100]. S. Typhimurium harboring
an shRNA expression plasmid, that targeted the alpha subunit
of inhibition (sh-INHA), was evaluated in vivo towards CT26
colon and B16F10 melanoma tumor models, where INHA
expression is known to be high [101]. Results showed
tumoricidal effects of Salmonella with and without the
INHA knockdown; however, more significant and prolonged
tumor growth inhibition was observed in the presence of sh-
INHA activity. Salmonella harboring RNAi plasmid vectors
are therefore an encouraging therapy strategy.

A combinational therapy was developed by Zhao et al.
B16 melanoma-bearing mice received Salmonella deliv-
ered RNAi targeting PD-1, a checkpoint molecule in-
volved in tumor immune escape through suppression of
T cell function, as well as pimozide, a drug which has

shown efficacy in some studies as a therapeutic against
melanoma [102]. Results showed that combined shRNA-
PD-1 and pimozide delivery significantly inhibited tumor
growth and prolonged animal survival, with an increase in
T cell response. The combination of a chemotherapeutic
with bacterial-based immunotherapy is a promising clini-
cal strategy in the treatment of melanoma.

Improving Targeting Efficiency and Specificity

Limited tumor targeting in vivo has been a drawback in the
use of some Salmonella strains for anticancer efficacy. To
improve targeting, VNP20009 was engineered for inducible
expression of carcinoembryonic antigen (CEA)-specific
single-chain antibody fragments (scFv) on the cell surface,
using the major outer membrane lipoprotein and the outer
membrane protein OmpA (Lpp-OmpA) expression system
[103]. The engineered strain resulted in increased accumula-
tion of bacteria in CEA-expressing tumors vs. CEA-negative
tumors [103]. Additionally, S. Typhimurium can be
engineered to overexpress recombinant, surface expressed,
single-domain antibodies to facilitate their targeting to tumor
tissue [104]. Specifically, S. Typhimurium was constructed to
express a camelid single-domain (VHH) antibody against hu-
man CD20, a well-studied tumor-associated antigen used in
antibody immunotherapy as a target of non-Hodgkin and
chronic lymphocytic leukemia (CLL) [105]. This engineered
strain exhibited strongly reduced accumulation within spleen
and liver in vivo, significantly increasing the safety profile of
tumor-targeting bacteria [104]. S. TyphimuriumΔppGpp was
constructed to display a peptide sequence termed arginine-
glycine-aspartate (RGD) on the external loop of OmpA
[106]. The RGD peptide is well understood as a tumor-
homing peptide that binds alpha v beta 3 integrin (ανβ3),
which is overexpressed on cancer cells and blood vessels dur-
ing cancer angiogenesis [107]. In vivo evaluation of RGD-
displaying ΔppGpp introduced to nude mice bearing human
breast cancer (MDA-MB-231) or human melanoma (MDA-
MB-435) exhibited a 1000-fold higher targeting efficiency
than control bacteria and prolonged survival of the animals
[106]. This novel approach to use tumor-associated antigens
for targeted delivery of S. Typhimurium demonstrates much
promise as a future therapy.

We recently performed RNA-seq on B16-F10 melanoma
tumors following S. Typhimurium VNP20009 intravenous
administration, first confirming expression of melanoma-
associated genes prior to analyzing the effect of VNP20009
on changes within the tumor transcriptional landscape. We
confirmed expression of TYRP1 , a gene encoding
tyrosinase-related protein 1, within melanoma tumors where
there was 1000-fold higher expression compared to spleen
tissue (data unpublished). TYRP1 is located in melanocytes
that produce melanin, a characteristic of B16 melanoma cells
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[108]. Interestingly, the TYRP1 gene, as well as others that fall
in the category of melanocyte differentiation antigens (MDA),
is a subject for vaccination therapy. The goal in these studies is
the activation of cytotoxic T lymphocytes [109]. It has been
described by Hara et al. that immunization against B16 mela-
noma can be accomplished by introduction of an antibody,
mAb TA99, that recognizes gp75 (TYRP1). The stimulated
immune response not only protected the animal from melano-
ma tumors, but also resulted in rejection of subcutaneously
implanted tumors and metastases [110]. As described above,
S. Typhimurium can be engineered to express recombinant,
surface expressed, single-domain antibodies that facilitate
their targeting to tumor tissue [104]. Therefore, it is possible
to use this approach to more efficiently and perhaps expedi-
ently target Salmonella to melanoma tumors via their expres-
sion of TYRP1, resulting in increased and reduced coloniza-
tion of the tumor and spleen, respectively.

Using Salmonella for Imaging and Diagnostics

Another application of tumor-colonizing S. Typhimurium is
the potential use in magnetic resonance and positron emission
tomography (PET) for diagnostic imaging. VNP20009 ex-
pressing the reporter herpes simplex virus thymidine kinase
(HSV1-tk) when delivered to mice in vivo localized within
tumors and sequestered the radiolabeled nucleoside analogue
2′-fluoro-1-β-D-arabino-furanosyl-5-iodouracil (FIAU) [111,
112]. A log-log relationship was found between PET imaging
and bacterial accumulation, indicating non-invasive localiza-
tion of the tumor site can be achieved based on pinpointing S.
Typhimurium. These techniques could be used to aid in track-
ing S. Typhimurium and understanding anticancer drug effi-
ciency and requirements for duration of targeting.

In an effort to address current limitations in tomo-
graphic sensitivity, S. Typhimurium has been modified
to release a recombinant biomarker. Specifically,
VNP20009 was engineered to express and release a fluo-
rescent reporter protein, ZsGreen, in a microfluidic-based
in vitro experimental setup. The produced ZsGreen was
detected using single-layer antibody dots and found to
accumulate in tissue with a 2600-fold higher resolution
compared to the current limit of tomographic techniques
[113]. The authors recently went a step further and eval-
uated the fluoromarker-releasing bacterial system in
tumor-bearing mice. Based on measurements gathered
from viable tissue, necrotic tissue, and plasma, the system
has the capability to detect tumors as small as 0.12 g
[114]. The Salmonella-based, fluoromarker-release system
has potential to identify currently undetectable microscop-
ic tumors and facilitate early diagnostics in the future.

Alternative Strategies Towards S.
Typhimurium-Mediated Cancer Therapy

Exploiting tumor targeting innate to S. Typhimurium and the
safety profile of attenuated strains, an engineering perspective
has been applied to therapy options by using bacteria to de-
liver nano-, photo-, and thermal-therapeutics. Employing S.
Typhimurium as a biological “mailman,” to carry drug pay-
loads via membrane attachment to intended sites in an accu-
rate and precise way is a growing field of focus [115].
Nanoscale bacteria-enabled autonomous drug delivery system
(NanoBEADS) enhanced nanoparticle retention and distribu-
tion within 3D tumor spheroids in vitro and 4T1 mouse mam-
mary carcinoma in vivo [116]. The drug delivery system
would improve therapeutic effects in cancer treatment and

Fig. 3 Photothermal therapy with
Salmonella. Tumor-targeting S.
Typhimurium are coated with
polydopamine, a biocompatible
photothermal agent. Following
tumor colonization, near-infrared
irradiation is used to activate the
polydopamine, causing a light-to-
heat conversion and therapeutic
effects
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has the potential to minimize side effects brought on by
chemotherapeutics.

Attenuated strains have been developed as “thermobots” to
transport membrane-attached, low-temperature sensitive lipo-
some (LTSL), which undergo structural and chemical phase
change to achieve timed doxorubicin delivery in response to
high-intensity focused ultrasound (HIFU) heating [117]. The
thermobots successfully triggered doxorubicin release with
high nuclear localization and induced proinflammatory cyto-
kine expression in vitro, as well as therapeutic efficacy in vivo
towards CT26 colon cancer [117]. Finally, photothermal ther-
apy, which results in the conversion of laser light to heat
through absorption, has been integrated with YB1, engineered
to survive only in anaerobic conditions by placing the essen-
tial gene asd under control of a hypoxia promoter pepT [118].
Nanophotosensitizers (indocyanine green-loaded nanoparti-
cles (INPs)) activated by near-infrared laser irradiation were
linked to the surface of YB1 for tumor precision therapy
[119]. The YB1-INP photothermal therapy resulted in a 14-
fold higher bioaccumulation within solid tumors compared to
treatment with YB1 alone and eradicated solid MB49 mouse
bladder carcinoma tumors in vivo [119]. Furthermore,
VNP20009 has been coated with polydopamine, a bio-
compatible photothermal agent and heated using near-
infrared irradiation (Fig. 3). In just a single dose, this
therapeutic approach eliminated B16F10 tumors without
relapse or metastasis [120].

S. Typhimurium decreases the expression of mammalian P-
glycoprotein (P-gp), a multidrug resistance (MDR) transport-
er, in a manner dependent on the bacterial protein, SipA.
Mercado-Lubo et al. constructed a gold nanoparticle system
packaged with SipA for enriched delivery, followed by che-
motherapeutic agents such as doxorubicin [121]. The group
found suppressed tumor growth in vivo towards CT26 colon
cancer with their semi-synthetic Salmonella nanoparticle
mimic, thereby enhancing efficacy and cytotoxicity of a
non-targeted chemotherapeutic [121]. Overall, the engineered
biomimic was efficient in circumventing tumor MDR and
exhibiting a high degree of safety [122].

Conclusions

We have provided a review to update readers to the best of our
ability on the state of S. Typhimurium in the bacterial-
mediated cancer therapy field of study. This bacterial marvel
has been tested in various stages of clinical trials [123].
VNP20009 has been evaluated in preclinical trials against
canine spontaneous neoplasia, where overall survival was best
in the complete responders [15]. A pilot trial (identifier:
NCT00006254) was then conducted on VNP20009 towards
patients with squamous cell carcinoma, where tumor coloni-
zation was observed but no tumor shrinkage [124]. Finally,

VNP20009 was evaluated in a phase 1 clinical trials (identi-
fiers: NCT00004216, NCT00004988) towards patients with
metastaticmelanoma, which accomplished safe delivery to the
patients with minimal toxicity; however, no tumor shrinkage
was observed [10, 125]. Another phase 1 clinical trial was
completed in 2014, where χ4550 expressing IL-2 was orally
administered to patients with unresectable hepatic metastases
from a solid tumor, with results yet to be reported (identifier:
NCT01099631). Despite tumor specificity and tumor-
suppressive effects being well documented in preclinical test-
ing, the translation to human oncology has fallen short. Thus,
the exact mechanisms underlying Salmonella-mediated can-
cer therapy are not fully understood, highlighting the com-
plexity of not only cancer but the interspecies relationship
between Salmonel la and res idents of the tumor
microenvironment.

To this end, the National Cancer Institute organized the first
Microbial-Based Cancer Therapy Conference in July 2017,
with the objective to share insights and stimulate conversation
in the field [126]. The first NIH call specifically geared to-
wards bacterial-mediated cancer research, named “Bugs as
Drugs” was posted February 2019 (https://grants.nih.gov/
grants/guide/pa-files/PAR-19-193.html). The use of
Salmonella as a novel antitumor agent has experimentally
shown much promise as a cancer therapeutic, at a time when
innovation is in the greatest need.
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