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Abstract
Prokaryotic whole-cell biosensors are effective yet inexpensive, renewable, and
environmentally friendly substitutes for many contemporary sensors and diag-
nostic devices. Unfortunately, many previously constructed prokaryotic
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biosensors are plagued by poor performance, which prohibits their use in real-life
applications. Biosafety concerns, promiscuous analyte detection, limited detec-
tion range, low output dynamic range, and high background expression are
common issues. Engineering principles and strategies from the emerging field
of synthetic biology offer unprecedented solutions. They accelerate new biosen-
sor development and improve biosensor behavior. Addition of novel devices and
modules from synthetic biology further augments functions beyond sensing and
renders them safer. Thanks to this, prokaryotic whole-cell biosensors have
enjoyed a renaissance in recent years, and they hold promise to address the
increasing demand for marketable biosensors.

Keywords
Whole-cell biosensor · Synthetic biology · Prokaryotes · Response curve · Limit
of detection · Selectivity · Dynamic range · Leakiness

Introduction

Whole-cell biosensors are domesticated or engineered cells that detect and report a
target or condition of interest (Daunert et al. 2000; van der Meer and Belkin 2010;
Wang and Buck 2012; Gui et al. 2017). They are viable alternatives to electronic or
chemical sensors and have drawn increasing attention over the last three decades.
Whole-cell biosensors are biodegradable and can be mass produced using inexpen-
sive nutrients. So they are renewable, environmentally friendly, and cost-effective
(van der Meer and Belkin 2010; Kim et al. 2018). Both prokaryotic and eukaryotic
biosensors have been developed. This chapter limits its scope to only prokaryotic
sensors, but the principles covered should also apply to their eukaryotic counterparts.

Prokaryotic biosensors have been researched for various purposes, for instances,
environment assessment (Stocker et al. 2003; Wang et al. 2013; Huang et al. 2015b;
Hwang et al. 2016; Kim et al. 2016; Cayron et al. 2017), clinical diagnosis (Duan
and March 2010; Saeidi et al. 2011; Archer et al. 2012; Gupta et al. 2013; Hwang et
al. 2014; Kotula et al. 2014; Courbet et al. 2015; Danino et al. 2015; Cayron et al.
2017; Daeffler et al. 2017; Riglar et al. 2017; Ho et al. 2018; Watstein and Styczynski
2018), and controlled bioprocessing (Zhang and Keasling 2011; Zhang et al. 2012).
Some less common applications include mineral surveying and landmine clearing
(Cerminati et al. 2011; Belkin et al. 2017).

Despite their advantages and demonstrated successes, many prokaryotic whole-
cell biosensors fail to survive in or even reach the competitive biosensor market. A
recurring concern is biosafety – whole-cell biosensors are often subjected to higher
levels of legal and ethical scrutiny because there is a risk of releasing genetically
engineered microorganisms into the wild (Dana et al. 2012). Yet with biosafety
aside, many prokaryotic biosensors are still leaky with low output dynamic ranges
and suffer from unsatisfactory detection limit and selectivity (Stocker et al. 2003;
Amaro et al. 2011; De Mora et al. 2011; Siegfried et al. 2012; Wang et al. 2013;
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Huang et al. 2015a; Kim et al. 2016; Merulla and van der Meer 2016). Nevertheless,
recent advancements in synthetic biology have provided numerous solutions.

Synthetic biology is the rational design of biological systems. It achieves so by
applying established principles from engineering to biology and so is highly inter-
disciplinary (Endy 2005; Purnick and Weiss 2009; Cheng and Lu 2012; Wang and
Buck 2012; Way et al. 2014; Bradley et al. 2016a, b; Bashor and Collins 2018; Xiang
et al. 2018). These principles include: (1) Abstraction: complexity is managed
through a hierarchy and less relevant information is hidden for clarity. (2) Standard-
ization: genetic elements are standardized into reusable parts with measurable
parameters that can be ranked on a common scale. (3) Modularization: genetic
parts and devices are independent and interchangeable modules with defined func-
tions, and (4) Rational and quantitative design: behavior of biological systems can be
described and predicted by mathematical models. These principles and concepts
enabled synthetic biologists to develop new strategies and devices, which substan-
tially enhanced the performance of existing prokaryotic biosensors. In addition, they
paved the way for developing novel biosensors with augmented capabilities. This
chapter thus focuses on how synthetic biology facilitates biosensor development,
creates tools for improving biosensors, and expands their capacities beyond sensing.

Synthetic Biology as an Enabling Platform for Rapid Construction
and Optimization of Prokaryotic Biosensors

A Streamlined Approach to Developing Novel Prokaryotic
Biosensors

Before the advent of genetic engineering, the development of a biosensor relied
much on serendipity. Many biosensors were by-products from studying the stress
responses or metabolic pathways of microbes. For instances, Microtox, one of the
earliest biosensors, is a bioluminescent bacterium that glows weaker when its
metabolism is disturbed by toxic chemicals (Bulich and Isenberg 1981), and a
whole-cell naphthalene biosensor was developed by random transposition of a
luciferase reporter into a naphthalene degradation pathway isolated from a soil
bacterial species (King et al. 1990). In these examples, the biosensor development
processes depended on the fortuitous discovery of a species or a strain with desirable
responses towards the targets, and they were hardly generalizable or readily
reproducible.

In contrast, synthetic biology offered a formalized approach for biosensor devel-
opment. A biosensor can be abstracted as a processor with a sensing module, a
processing module, and an actuating module (Fig. 1a) (van der Meer and Belkin
2010; Wang and Buck 2012; Bradley andWang 2015; Bernard andWang 2017; Kim
et al. 2018). Any naturally occurring response pathway in a prokaryote can also be
dissected and classified in a similar fashion. Therefore, development of a biosensor is
reduced to a task of identifying or creating an input module that can respond to the
target and rewiring it to an observable output.
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Fig. 1 (continued)
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This framework is illustrated by the classical example of the whole-cell biosensor
for detecting arsenic in drinking water. Escherichia coli naturally protect themselves
from high concentrations of arsenic through its endogenous arsenic resistant path-
way (Fig. 1b) (Cervantes et al. 1994; Nealson et al. 2002; Silver and Phung 2005;
Andres and Bertin 2016). When bounded by arsenite (III), the ArsR transcription
factor would de-repress its cognate promoter ParsR which then triggers expression of
molecular pumps that remove arsenite from the cell (Shi et al. 1996; Silver and
Phung 2005; Chen and Rosen 2014; Saha et al. 2017). The ArsR-ParsR transcrip-
tional regulation can thus be understood as a sensing module and the genes coding
for the arsenic efflux pumps as an actuating module. The natural sensing module can
then be isolated and wired to a downstream reporter gfp, and this reengineered E. coli
would give a higher level of green fluorescence under an increased level of arsenic,
serving the purpose of a biosensor (Fig. 1d).

This framework is universal and can be adopted to quickly build new prokaryotic
biosensors, because many other sensing modules have also been characterized. The
majority of these sensing modules worked through either an allosterically controlled
transcriptional regulator or a bacterial two-component system. The most well-studied
examples for the former category include modules for detecting metal ions like mercury
(Fig. 1c and e) and nutrients such as arabinose and lactose (Misra et al. 1985; Barkay et
al. 2003; van der Meer and Belkin 2010; Mahr and Frunzke 2016). Others include
modules for reporting quorum sensing molecules that could indicate infections caused
by pathogens or inflammation biomarkers (Saeidi et al. 2011; Archer et al. 2012; Gupta
et al. 2013; Hwang et al. 2014). There are also examples for hypoxia responsiveness
(Anderson et al. 2006; Yu et al. 2012), aromatic contamination, and DNT/TNT from
landmines (Selifonova and Eaton 1996; Belkin et al. 2017). For two-component
systems, notable modules include sensors for detecting green, red, and blue light,
respectively (Olson et al. 2014; Fernandez-Rodriguez et al. 2017), as well as sensors
for zinc and lead (Fig. 3a) (Wang et al. 2013) and the aforementioned sensors for
inflammation (Daeffler et al. 2017; Riglar et al. 2017). For both categories of sensing
modules, the output from the module is almost always a transcriptional output. There-
fore, they can be conveniently connected to an output module in a “plug-and-play”
fashion to drive reporter gene expression.

�

Fig. 1 Architecture and engineering of synthetic biosensors. (a) Architecture of a modular
synthetic biosensor. R, receptor. P, promoter. gfp, gene encoding a green fluorescent protein. rfp,
gene encoding a red fluorescent protein. luxAB, genes encoding a bacterial luciferase for lumines-
cent output. lacZ, gene coding β-galactosidase for colorimetric output. arg, acoustic reporter genes
which express gas vehicles that are detectable by ultrasound. luxI and lasI, genes encoding
synthases for quorum sensing molecules. (b) ars operon from E. coli’s chromosome and its role
in arsenic regulation (Silver and Phung 2005; Chen and Rosen 2014). GlpF, an aquaglyceroporin.
PST, phosphate-specific transport system. PIT, phosphate inorganic transport system. (c) mer
operon from Shigella flexneri R100 plasmid and its role in mercury regulation (Misra et al. 1985;
Barkay et al. 2003). CH3HgX, organic form of mercury. HgX, inorganic form of mercury. (d) An
engineered E. coli biosensor with arsenic sensing and reporting function. (e) An engineered E. coli
biosensor with mercury sensing and reporting function
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Efficient Sensor Optimization by Standardized and Modularized
Genetic Parts

In biotechnology, whole-cell mutagenesis remains the canonical technique to
improve the characteristics of a strain. While it is still widely used in whole-cell
biosensor optimization, they have further benefited from the modularization of
genetic elements. The dissection of gene circuitries into stand-alone parts, e.g.,
promoters and ribosome-binding sites (RBS), encourages the scope of the otherwise
global random mutagenesis, as well as their manifested effects, to be confined to a
local region. This is exemplified by the work of Li et al. (2015). In pursuit of a better
sensing module for arsenite, they simultaneously mutated the ArsR coding sequence
and the ParsR promoter by error-prone polymerase chain reaction and identified
mutations that reduced leakiness and boosted the output dynamic range (Li et al.
2015).

Part standardization also led to the appearances of part libraries. Since the length
of a sequence undergoing mutagenesis is shortened, the combinatorial sequence
space to be explored is drastically shrunk. Therefore, sequence variations can be
thoroughly exhausted, and this resulted in a large variety of elements with perfor-
mance that spans the entire activity spectrum. For example, the Anderson promoter
library was generated from saturation mutagenesis of a constitutive promoter, and
there is a community RBS collection on iGEM that confers different strengths for
translation initiation (http://parts.igem.org).

They are particularly helpful if only a single part needs to be optimized – a part
that was too strong and led to undesirable behavior in a biosensor could be swapped
out by a weaker version effortlessly. This will be illustrated by an example of
replacing an RBS to reduce biosensor leakiness in section “Managing Leakiness
on a Translational Level.” In addition, these libraries enable full exploration of a
design space for expression strengths. It has been suggested that a promoter library
and an RBS library could be combinatorically combined to optimize the expression
strength for any gene of interest (Kosuri et al. 2013).

Biosensor Improvement by Directed Evolution

Synthetic biology has also provided new techniques for optimizing or altering
biosensor behavior through directed evolution, which include phage-assisted con-
tinuous evolution (PACE) (Esvelt et al. 2011) and compartmentalized partnered
replication (CPR) (Abil et al. 2017). In an example, a biosensor actuated through a
split T7 RNAP polymerase had an improved signal-to-noise ratio after one split half
was subjected to evolution by PACE (Pu et al. 2017). In another example, the
transcriptional repressor for tryptophan has been evolved by CPR to respond spe-
cifically to halogenated tryptophan analogues (Ellefson et al. 2018).
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Development of New Sensing Modules

In biosensor development, there is a perennial and insatiable need for new sensing
modules for new chemicals, biomarkers, or other targets. Due to strong chemical
specificities in regulators and receptors, existing sensing modules intended for one
target can rarely fully satisfy the sensing requirement of a different target, even
though the two targets may be highly similar in structure. Thus, a search for a
specific sensor module is almost always necessary.

In nature, prokaryotes contribute the most in biodiversity. They thrive in all
niches, including those inhabitable to other organisms, and respond to countless
stimuli. If an environment has long been enriched with a compound, it is very likely
to find in the vicinity a prokaryotic dweller evolved to detect and metabolize it
(Nealson et al. 1991; Cervantes et al. 1994; Nealson et al. 2002). Consequently, a
conventional practice to uncover a new biological sensing module is to sample and
study bacteria in a target-enriched environment. The aforementioned naphthalene
biosensor is one of such examples – the naphthalene metabolic pathway originated
from a strain of Pseudomonas fluorescens living in the soil of a manufactured gas
plant. This is still routinely practiced but it poses a limit in biosensor development.
Nowadays, there are new strategies to accelerate sensing module discoveries.

Part Mining
Part mining is the bioinformatics-guided search for biological parts from sequenced
genomes and is a branch of genome mining. Genetic parts or proteins often have
orthologues in closely related species which carry out similar tasks and have
homology in sequences. Therefore, if a part of interest has a defined sequence
feature, orthologs that potentially belong to the same family can be identified by
performing sequence alignments across multiple genomes. Shortlisted candidates
can then be synthesized and characterized, and parts that showed desirable responses
can be grouped to form a new library. Many sequenced genomes, as well as
metagenomes from unculturable prokaryotes, have been deposited into bioinformat-
ics databases, which become a lucrative resource for part mining (Johns et al. 2018).
For example, using sequences for a cadmium-responsive transcription factor from
Staphylococcus aureus, researchers discovered a new sensing module for cadmium
from the genome of Bacillus oceanisediminis, a bacterium that resides in sediment
undersea (Kim et al. 2016).

In addition, some databases contain annotated proteins or parts, so mining can
also be done via a search of keywords in described or predicted biological functions.
One demonstrated example is the creation of a library of sensing modules for
aromatic compounds, obtained through part mining from the UniProt database
(Xue et al. 2014).

Antibody-Derived Domains as Universal Sensing Modules
Many sensing modules have been derived from natural pathways, but their devel-
opment into biosensor components often requires a thorough understanding of the
underlying biochemistry, which is a time-consuming process. Moreover, some
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targets might not have a natural sensing module responsible for their detection. Some
recent researches sought to circumvent these problems by turning to antibody-
derived protein domains.

Antibody-derived domains are protein fragments of antibodies created proteolyt-
ically or genetically. The leading examples are the single domain antibodies (sdAb)
(Holliger and Hudson 2005). They retain the variable region responsible for strong
and specific antigen recognition and binding, but their considerably smaller sizes
allow stable and soluble expression from bacteria. Most importantly, a novel sdAb
for any given epitope can be quickly and inexpensively created by screening a
synthetic and combinatorial antibody domain library against the epitope. Identified
sdAb can then be fused with other protein domains that could elicit sensing
responses upon target binding. A proof-of-concept example was demonstrated by
fusion of a caffeine-binding sdAb to a DNA-binding domain (Chang et al. 2018).
sdAb co-localized on a caffeine molecule would then allow dimerization of the
DNA-binding domain and restore its function as a transcriptional repressor.

Tools and Strategies from Synthetic Biology for Optimizing
Biosensor Performance

Many early biosensors have subpar performance compared to their electronic or
chemical counterparts, rendering them uncompetitive in field applications. In recent
years, tools and strategies developed from synthetic biology created new avenues to
improve the characteristics of whole-cell prokaryotic biosensors. There are mathe-
matical models that provide quantitative frameworks for sensor improvement (Ang
et al. 2013; Mannan et al. 2017; Xiang et al. 2018), but this section focuses on tools
and strategies that have been experimentally proven.

Properties of a Biosensor

From the perspective of engineering, it is paramount to define measurable properties
so that improvements can be gauged quantitatively. Different metrics are available
for defining a whole-cell sensor’s performance (Daniel et al. 2013; Mannan et al.
2017). The one adopted in this chapter focuses on four important aspects most
pertinent to applications: selectivity, limit of detection (LOD), output dynamic
range, and leakiness (Fig. 2). Selectivity is a qualitative property that concerns
how well the biosensor distinguishes the target of interest among others that are
chemically similar (Fig. 2a).

The other three properties define characteristics of the response curve of a
biosensor, which mathematically describes how a sensor’s output varies with its
input (Fig. 2b). Most biosensors have a sigmoidal response curve that monotonically
increases with the target concentration. The LOD is the minimal concentration of the
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target that elicits an observable response. The output dynamic range refers to the
ratio between the maximally achievable output and the basal output of the biosensor.
Leakiness is the basal level of the biosensor when no target is present and has been
known to jeopardize sensor applications: if colorimetric outputs are used, the
response may be easily saturated even in the absence of targets and would restrict
titrimetric analysis (Wackwitz et al. 2008).

Strategies for Enhancing Selectivity

Some sensing modules are naturally promiscuous and can be triggered by targets
with similar chemical properties. This is often the case for heavy metal sensing
(Amaro et al. 2011; Wang et al. 2013). For example, CadC from S. aureus can sense
Cd, Pb, and Zn; CmtR from Mycobacterium tuberculosis can sense Cd and Pb; and
ArsR from E. coli can sense As, Sb, and Bi (Saha et al. 2017).

These sensing modules are thus nonspecific and could give false positives when
deployed in the field. Given that those transcription factors are allosterically regu-
lated, an intuitive and routine approach is to randomly mutate their binding pockets,
and then screen for mutants with increased selectivity towards the ion of interest. A
number of successful cases have been reported: a mutated CueR remained sensitive
to Cu2+ but no longer responded to Ag+ and became more sensitive to Au+

(Stoyanov and Browns 2003). In another example, MerR was mutated to detect
Cd2+ rather than its original ligand Hg2+ (Hakkila et al. 2011). RcnR is normally
regulated by both Ni and Co but could be mutated to only recognize the former
(Cayron et al. 2017). However, as with general mutagenesis, this approach is time-
consuming and does not guarantee success in identifying a receptor with desirable
traits.

A general solution is to employ a genetic logic AND gate with two different
receptors that can detect the same ligand (Bernard and Wang 2017). For example,
two transcription factors can detect Zn2+, but both are nonspecific: ZraR detects Zn2+

Fig. 2 Metric for defining the performance of a biosensor. (a) Schematic illustrating a bio-
sensor’s selectivity. (b) A biosensor's response curve with the sensor’s leakiness, limit of detection
(LOD), and output dynamic range annotated
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and Pb2+, and ZntR detects Zn2+ and Cd2+ (Wang et al. 2013). Implementation of an
AND logic using ZraR and ZntR as the inputs will yield a biosensor that responds to
Zn2+ but not Pb2+ or Cd2+, thus increasing its specificity (Fig. 3a).

This AND gate example was derived from the HrpRS activator complex and its
cognate promoter PhrpL (Fig. 3b). PhrpL is a σ54-dependent promoter that is activated
only when both HrpR and HrpS are present (Jovanovic et al. 2011; Wang et al.
2011a; Liu et al. 2018). Many other logic gates orthogonal to the HrpRS system are
also available from the synthetic biology community: a T7 RNA polymerase-amber

Fig. 3 Biosensors specificity enabled by synthetic biology. (a) A zinc-specific biosensor using an
AND gate (Wang et al. 2013). (a-i) A zinc/lead biosensor and its response curves for Zn2+ and Pb2+.
(a-ii) A zinc/cadmium biosensor and its response curves for Zn2+ and Cd2+. (a-iii) A zinc-specific
biosensor was generated by integrating both sensing modules from i and ii into an AND gate. gfp,
gene encoding a green fluorescent protein. (b) The HrpR/HrpS hetero-regulation motif in the hrp
(hypersensitive response and pathogenicity) system of Pseudomonas syringae pv. tomato DC3000
(Wang et al. 2011a; Wang and Buck 2014). The hrp system promotes pathogenicity of the bacteria
in their plant host. The σ54-dependent hrpL promoter can be activated by the heterohexamers of the
transcriptional activators HrpR and HrpS
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Fig. 4 Strategies for improving biosensors’ LOD. (a, b) A transcriptional repressor (TR) and a
transcriptional activator (TA)-based biosensor. PC, constitutive promoter. PTR, TR’s cognate pro-
moter. PTA, TA’s cognate promoter. Black dots, targets of interest. gfp, gene encoding a green
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suppressor system that integrates two input signals (Anderson et al. 2007), activator-
chaperone systems (Moon et al. 2012), split T7 RNA polymerase-based systems
(Shis and Bennett 2013; Schaerli et al. 2014), and recombinase-based Boolean gates
(Bonnet et al. 2013; Courbet et al. 2015). These orthogonal logic gates provide the
means to enhance biosensor specificity in more complicated cases.

Strategies for Lowering the Limit of Detection (LOD)

Similar to solutions for biosensor selectivity, random mutagenesis on promoters or
transcription factors used to be a popular way to generate mutated sensing modules
capable of detecting lower ligand concentrations. However, the issue of LOD is
intrinsically tied to the relative concentrations between the receptor and the ligand,
so a more rational approach is to tune their respective densities in the cell.

LOD Improvement by Tuning Receptor Densities
Depending on their modes of action, the LOD of a sensing module could be lowered
by increasing or decreasing concentrations of receptors (Merulla et al. 2013; Wang et
al. 2015; Wan et al. 2019). If the receptor is a transcriptional repressor that could be
derepressed by an inducer (Fig. 4a), reducing its concentration could lead to both a
lower LOD and a higher dynamic range. In the canonical allosteric transcriptional
regulation paradigm, the binding between the inducer and the repressor, and between
the repressor and the promoter are in equilibrium. A minimum concentration of
inducer is always required to sufficiently inactivate the repressor and to allow the
promoter to drive an observable expression of the reporter gene. Reducing the
repressor concentration would therefore lower the specified demand on the inducer
concentration, which effectively translates into a decreased LOD for the sensing
module. This strategy has been demonstrated on the previously described arsenic
biosensor, in which its LOD was improved by replacing the strong constitutive
promoter that drives the repressor ArsR by a weaker variant (Fig. 4c).

To improve the LOD in the opposite scenario, where the receptor is a transcrip-
tional activator inducible by the inducer (Fig. 4b), the receptor density needs to be
raised (Wang et al. 2015). In the case of the LuxR-Plux sensor that detects the ligand
AHL, more LuxR present in the cells implies a higher probability to form the LuxR-
AHL complexes (Fig. 4d). Therefore, the Plux promoter can be activated with a lower
concentration of AHL.

�

Fig. 4 (continued) fluorescent protein. (c, d) Improving a biosensor’s LOD by tuning receptor
densities (Wang et al. 2015). (c) shows a TR-based arsenic biosensor, and (d) shows a TA-based
AHL biosensor. PStrong, strong constitutive promoter. PWeak, weak constitutive promoter.
(e) Improving a biosensor’s LOD by increasing its targets’ intracellular density (Hynninen et al.
2010; Cayron et al. 2017). IS, importing system. ES, exporting system. R, receptor. PR, R’s cognate
promoter
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Fig. 5 Strategies for improving biosensors’ output dynamic range. (a) Different σ70 binding sites
of an inducible promoter yield different basal levels and output dynamics as a result of relative
equilibrium constants of σ70 binding to the �10 and �35 regions, ln(Keq) = � (ΔG�10 + ΔG�35)
(Chen et al. 2018). Non-consensus bases are underlined. ΔG�10 and ΔG�35 correspond to the relative
changes in the binding energy due to changes in the �10 and �35 sites. R, receptor. PR, R’s cognate
promoter which contains an operator for R (RO). yfp, gene encoding a yellow fluorescent protein.
(b) Biosensors without transcriptional amplifiers (TAmp) (b-i), with two transcriptional repressor (TR)-
based amplifiers (b-ii), or with a transcriptional activator (TA)-based amplifier (b-iii), and their response
curves (Hooshangi et al. 2005; Wang et al. 2014; Kim et al. 2016). iv, an amplifier with positive
feedback (Nistala et al. 2010). PTR, TR’s cognate promoter. PTA, TA’s cognate promoter. gfp, gene
encoding a green fluorescent protein. (c) A gain-tunable TAmp based on a HrpRSV system (Wang et al.
2014). This device scales the weak transcriptional input signal (I) linearly in response to a second “gain
tuning” transcriptional input (βT)

Engineering Prokaryote Synthetic Biology Biosensors 13



It is noteworthy that receptor densities could also be dynamically controlled to
give conditional LOD. A cadmium biosensor was integrated with a toggle switch,
where the CadR repressor concentration was modulated by both the cadmium
concentration and a LOD tuning ligand (Wu et al. 2009). Under a moderate level
of the LOD tuning ligand, an increase in cadmium concentration would in turn
reduce expression of the CadR repressor. This positive feedback mechanism lowered
the LOD of the biosensor, and interestingly, the feedback could be quenched by
increasing the concentration of the LOD tuning ligand.

LOD Improvement by Tuning Intracellular Ligand Densities
For ligands that interact with sensing modules intracellularly and do not diffuse
freely across the membrane, increasing their cytoplasmic concentrations increases
their availabilities and hence their probabilities to excite the sensing module. In fact,
this strategy can be frequently found in nature. In E. coli for example, the trans-
portations of arabinose and rhamnose across the cell membrane are governed by
positive feedback loops (Altenbuchner and Mattes 2005; Fritz et al. 2014). Induction
of the metabolism pathways drives the expression of the transmembrane transporter
proteins, which subsequently facilitates the imports of the sugars.

In biosensor design, if the transmembrane transporters for a ligand could be
identified, the same outcome could be reproduced by overexpressing importers
and knocking out exporters (Fig. 4e). For instance, disruption of the efflux trans-
porters for Zn/Cd/Pb in P. putida strain KT2440 decreased the detection limits by up
to 45-fold (Hynninen et al. 2010). In another example, an engineered E. coli
biosensor achieved a lower LOD for Ni through the introduction of several foreign
Ni-uptake systems and the deletion of Ni efflux pumps (Cayron et al. 2017).

Strategies for Increasing Output Dynamic Range

A number of native promoters responsive to heavy metals are relatively weak and so
their derived biosensors suffer from limited output dynamic ranges (Stocker et al.
2003; De Mora et al. 2011; Siegfried et al. 2012; Wang et al. 2013; Huang et al.
2015a; Kim et al. 2016; Merulla and van der Meer 2016). Again, one option is to
perform random mutagenesis on the promoter to maximize the transcriptional
output.

Recently, however, a more reliable approach has been developed for engineering
hybrid σ70-based promoters. Chen et al. demonstrated that the dynamic ranges of
these promoters could be quantitatively predicted by the choices of their �35 and
�10 regions, which dictate the binding affinities between the promoters and the σ
factors required for transcription initiation (Fig. 5a) (Cox et al. 2007; Brewster et al.
2012; Guzina and Djordjevic 2017; Chen et al. 2018). By inserting binding sites of
inducible transcription factors around the �35 and �10 sequences, inducible pro-
moters with improved dynamic ranges could be obtained. This example nonetheless
is specific to σ70 promoters and remains inapplicable to promoters with uninsulated
promoter core sequences.
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A more universal solution from synthetic biology is to magnify the initially
limited output through transcriptional amplifiers (TAmps). A TAmp is analogous
to a buffer gate in electronics – it amplifies a transcriptional input signal before
outputting it (Fig. 5b). In general, a TAmp takes the form of a transcriptional cascade
that comprises a transcription factor (TF) and its cognate promoter PTF. TF is the
output of the sensing module and the PTF drives expression of the next cascade or the
final observable output. To qualify as a TAmp, PTF must have a higher maximal
activity than the promoter upstream of TF, so that a minute transcriptional input
could be converted into a much larger downstream output. Therefore, mathemati-
cally, a TAmp can be understood as a function that receives a transcriptional input
from a relatively narrow domain and maps it to a much larger range.

Early examples of TAmps were built using transcriptional repressors. Two exam-
ples of repressor-based cascades have been built, and one was shown to amplify
weak promoter activities that would otherwise be unobservable (Fig. 5b-ii) (Karig
and Weiss 2005; Hooshangi et al. 2005). However, the use of repressor-based
amplifiers might not be suitable for sensing modules with positive relationships
between inputs and outputs, because they would invert the response functions,
unless they are cascaded in even numbers.

New TAmps based on transcriptional activators have been developed. This is
exemplified by a TAmp built from the HrpRS system described above (Fig. 5b-iii
and c) (Wang et al. 2014; Wan et al. 2019). It readily accepts a wide range of
transcriptional inputs and linearly amplifies them in an analog fashion. This property
proved useful when the amplifier was used to significantly improve an arsenic
sensor’s output dynamic range. The TAmp is also versatile – the amplification
gain can be tuned by regulating the level of HrpS, which could be achieved either
translationally, via changing the RBS, or post-translationally, by expressing the HrpS
inhibitor HrpV. Another notable example of TAmp was based on the T7 RNA
polymerase and its cognate promoter PT7 (Kim et al. 2016), which has been shown
to improve both the LOD and the output dynamic range of a cadmium/lead
biosensor.

Provided that the sensing module is tightly regulated, amplification capacities for
a TAmp could be further augmented through the incorporation of a positive feedback
loop. In a proof-of-concept circuit, the output of a TAmp drives expression of an
activator used in the TAmp (Nistala et al. 2010), so signal amplification not only
applies on the input but also on the output (Fig. 5b-iv). Compared to the stand-alone
TAmp architecture, this coupled TAmp significantly improved the observable output
as well as the detection limit of a biosensor. Caution should be exercised when
applying this coupled architecture to a potentially leaky sensing module, because a
high basal output level could be significantly amplified and would lead to a reduced
output dynamic range.

Output amplification can also be realized using recombinase-based memory
modules, provided that the maximal attainable transcription activity of the final
output can surpass that of the sensing promoter. This will be described further in
section “Recombinase-Based Memory Devices.”
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Fig. 6 Strategies of tuning biosensors’ leakiness and output dynamics. (a) A transcriptional
repressor (TR)-based inducible promoter, with an operator site (TRO) at the distal, core, or proximal
region of the promoter. Repression efficiencies were shown to depend on the TRO’s location, which
follows core� proximal� distal (Cox et al. 2007). PTR, TR’s cognate promoter. yfp, gene encoding
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Strategies for Reducing Leakiness

Biological processes are evolved to be inherently leaky and noisy, because it leaves
room for variations and allows bet-hedging in face of sudden and drastic changes in
the environment (Randall et al. 2011). One would therefore rarely find a natural
sensing module that displays little to no leaky behavior. So it is important, and more
appropriate, to view leakiness not as a curable property but as an unavoidable issue
to be managed. Leakiness of a biosensor typically originates from the promoter
within the sensing module (Wackwitz et al. 2008; Arpino et al. 2013; Adams et al.
2014; Merulla and van der Meer 2016), but it could be addressed by strategies that
act on levels of transcription, translation, and post-translational modifications.

Managing Leakiness on a Transcriptional Level

Receptor and Promoter Engineering
Since the sensing promoter is almost always the source of leakiness, it is logical to
start by engineering the promoter and its cognate transcription factor. Once again,
random mutagenesis and random promoter truncation are two popular approaches –
libraries of mutant sensing regulator-promoter pairs are screened to obtain less leaky
and yet still functional variants (Li et al. 2015; Daeffler et al. 2017). Identified
candidates usually have mutations that alter the promoters’ transcription initiation
rates or the affinities between the transcriptional regulators and the promoters. The
previously described cases of mutagenesis done on the ArsR-ParsR sensing module
and the quantitative approach to engineer hybrid σ70 promoters are examples of such
approaches (Fig. 5a) (Li et al. 2015; Chen et al. 2018).

A similar but more predictable method is to vary the number and position of
operators (Fig. 6a and b) (Merulla and van der Meer 2016; Zong et al. 2017; Chen et
al. 2018; Wan et al. 2019). Operators are sequences within a promoter that serve as
binding sites for transcriptional regulators, and there are some general rules regard-
ing how they affect promoter leakiness. Operators for repressors may be placed in
the distal region (upstream of �35), the core region (between �10 and �35), or the
proximal region (downstream of �10) (Fig. 6a). If only a single operator for
repressor exists in the promoter, maximal repression efficiency, and hence minimal

�

Fig. 6 (continued) a yellow fluorescent protein. (b) Transcriptional roadblocking effect. gfp, gene
encoding a green fluorescent protein. (c) Antisense transcription as a tool to tune gene expression.
Left panel: antisense promoter (Panti) can reduce PR’s leakiness by blocking entry of the ribosome to
the reporter’s mRNA (c-i), triggering mRNA degradation(c-ii), or blocking the reading of the RNA
polymerase (RNAP) along the gene (c-iii). Right panel: The sensor’s leakiness and output dynamics
correlated with the strength of Panti (Brophy and Voigt 2016). R, receptor. PR, receptor’s cognate
promoter. (d) Modifications of ribosome binding sites (RBS) for a transcriptional activator (TA), a
TR, or the reporter change the leakiness and output dynamics of a biosensor (Wang et al. 2011a;
Nielsen et al. 2016; Rubens et al. 2016). PTA, TA’s cognate promoter. (e) Schematics of a post-
translational regulation on an IPTG biosensor (Fernandez-Rodriguez and Voigt 2016). L represents
a protein degradation tag LVA
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leakiness, would be obtained when the operator is placed in the core region (Cox et
al. 2007). Repression efficiency is further enhanced if the operator overlaps with part
of the �10 or �35 regions (Chen et al. 2018).

Adding an extra operator downstream of a promoter can also reduce leakiness.
Should the first operator fail to recruit the repressor, the repressor bound to the extra
operator can still inhibit readthrough of the RNA polymerase (Fig. 6b). This effect is
known as “roadblocking,” and its efficiency can be tuned by varying the distance
between the extra operator and the core region (Hao et al. 2014; Merulla and van der
Meer 2016). Though it should be noted that the roadblocking efficiency depends on
the maximum strength of the sensing promoter, the repressor concentration and the
affinity between the repressor and the operator, and so the effects on different
operator-repressor pairs would likely be variable.

Unlike their repressor counterparts, operators for activators can only be functional
when placed in the distal region (Cox et al. 2007).

Antisense Transcription
Antisense transcription refers to the strategy of inserting a second promoter down-
stream of the sensing promoter but in an opposite direction (Pelechano and Stein-
metz 2013). The second promoter will drive transcription of an RNA that is partially
or fully complementary to the RNA produced from the sensing promoter. Antisense
transcription interrupts RNA polymerase reading from the first promoter (Fig. 6c-iii)
(Brophy and Voigt 2016), thus reducing its basal expression level and leakiness. If
the antisense promoter is located at the 30 end of the target gene, the antisense RNA
will be long enough to form a double-stranded RNAwith the target mRNA and then
triggers its degradation (Fig. 6c-ii) (Lasa et al. 2011). The efficiency of this strategy
can be tuned by regulating the strength of the antisense promoter (Fig. 6c) (Brophy
and Voigt 2016), but the maximum output expression from the first promoter may
also significantly decrease if the antisense promoter is too strong.

Antisense transcription may also exert translational interference: an anti-sense
promoter that is positioned immediately downstream of the target promoter may lead
to transcription of a short antisense RNA that inhibits translation initiation of the
target gene (Fig. 6c-i) (Kawano et al. 2007).

Managing Leakiness on a Translational Level
The expression rate of any gene of interest can be superficially regarded as a product
of its transcription rate and translation rate. Reducing the translation efficiency is
therefore an indirect way to counteract transcription rates that are either too high or
too low. This is most helpful in scenarios where transcription elements are fixed and
cannot be readily replaced. For example, in a transcriptional cascade, the upstream
and downstream promoters are defined. Yet the effective intracellular concentrations
of the transcriptional regulators can be modulated by changing their translation rates.
This would alter their input-output characteristics and in turn impact the final
observable leakiness of the biosensor (Wang et al. 2011a; Nielsen et al. 2016). In a
specific example, an active recombinase under the control of a leaky inducible
promoter might switch on the downstream signal even in absence of a target. By
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attenuating its translation initiation rate and hence its concentration, this undesirable
effect could be mitigated (Rubens et al. 2016).

The most common way to tune translation is to modify the translation initiation
rate, which is to a great extent governed by the sequence of the ribosome-binding site
(RBS) that dictates its affinity towards the ribosome (Fig. 6d). RBS strengths can be
described by a biophysical model and are generally predictable from the RNA
sequences alone (Salis et al. 2009). A few RBS libraries with characterized transla-
tion initiation efficiencies are also available (http://parts.igem.org). However, trans-
lation rates of a protein have been shown to depend on myriad factors other than the
RBS itself (Salis et al. 2009; Egbert and Klavins 2012; Kosuri et al. 2013; Mutalik et
al. 2013; Wu et al. 2018). The recent work by Cambray et al. provided the most
comprehensive understanding on how sequences other than the RBS affect transla-
tion efficiencies – RNA secondary structures in the vicinity of the start codon play a
dominating role, while other factors, like codon usage, contribute to a much smaller
extent (Cambray et al. 2018).

Managing Leakiness on a Post-translational Level
In some published biosensors, protein degradation tags were attached to the regula-
tor or reporter proteins to promote their clearance from the cell and reduce their
effective concentrations (Andersen et al. 1998; Arpino et al. 2013; Cameron and
Collins 2014; Bradley et al. 2016b). However, this method comes with a trade-off
with a reduction in maximum output level (Fig. 6e, gray line).

A solution that rescued the output level but maintained the lower level of
leakiness has been recently developed (Fig. 6e) (Fernandez-Rodriguez and Voigt
2016; Wan et al. 2019). It achieved so by inserting a protease cleavage site between
the reporter protein and the degradation tag, and the cognate protease is under the
control of the sensing module. At lower target concentrations, a small amount of
reporter was produced due to leaky expression, but they were quickly degraded due
to the presence of the degradation tag. At high target concentrations, both the
protease and the reporter would be strongly expressed, so the protease could cleave
off the degradation tag from the latter, and the observable output could remain at a
high level (Fig. 6e, orange dotted line). This protease-based regulation strategy is
flexible and can be effortlessly applied to any leaky biosensors.

Functional Expansion of Biosensors by Synthetic Biology

Memory Devices

A biosensor with only sensing and actuating modules suffices to report the imme-
diate bioavailability of a target. Yet when endowed with memory modules that allow
record and retrieval of transient detection events, whole-cell biosensors become
excellent platforms for continuous documentation of surroundings, because they
are living organisms that can proliferate and colonize an environment with minimal
maintenance from humans (Kotula et al. 2014). This could be useful in tracking a
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Fig. 7 Diagrams of genetic circuits for memorizing environmental signals. (a) A toggle-
switch-based memory device. Initially, the toggle switch is at an OFF state, where the TR2 is
expressed and TR1 expression is repressed. Upon target detection, the sensing circuit expresses
TR1, which flips the device into an ON state. TR1 and LacZ will be continuously expressed even
after the target is removed (Kotula et al. 2014; Riglar et al. 2017). R, receptor. PR, R’s cognate
promoter. TR, transcriptional repressor. PTR, TR’s cognate promoter. lacZ, gene encoding β-
galactosidase for colorimetric output. (b) A recombinase-based memory device. Upon sensing a
particular target, the biosensor produces the Cre recombinase, which first flips the orientation of the
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delayed response in a difficult-to-reach environment, like those in clinical diagnostic
settings (Courbet et al. 2015).

Memory devices can be broadly classified according to their reversibility and
whether the memory is encoded in the DNA (i.e., genetic versus epigenetic).
Synthetic biologists have created an overwhelming number of memory devices
and they have been reviewed elsewhere (Inniss and Silver 2013; Roquet and Lu
2014; Bradley and Wang 2015). Given the scope of this chapter, only examples that
have been successfully installed and demonstrated in biosensors will be covered.

Toggle Switches
The synthetic toggle switch can be considered as the earliest epigenetic and revers-
ible memory device from synthetic biology (Kotula et al. 2014; Zhang et al. 2014;
Certain et al. 2017; Riglar et al. 2017). It achieved bistability through two repressors
that mutually inhibit each other (Fig. 7a) (Gardner et al. 2000). A transient induction
that upregulates the expression of either one of the repressors (TR1) downregulates
the expression of the other (TR2) and allows the latter to dominate, which results in a
flip from one state to another. The state of the system will then be stably maintained
until the now dominant repressor (TR1) is repressed again. Since only two states are
allowed, the toggle-switch converts any graded input response into a digital output,
and the readout for a target will no longer be titrated, but this might improve
robustness in a sensor and aid decision-making processes (Roquet and Lu 2014).

The lambda phage cI/Cro genetic switch is a natural toggle switch which has high
repression efficiency and modularity, but other strong repressors that display coop-
erative binding properties can also be used. Toggle switches have been widely used
in whole-cell biosensors. For example, E. coli biosensors have been engineered to
sense and record an antibiotic exposure or an inflammation in murine guts (Kotula et
al. 2014; Riglar et al. 2017). Another toggle switch was part of a Pavlovian-like
conditioning circuit in E. coli, where it could memorize a conditioned stimulus
(Zhang et al. 2014).

Recombinase-Based Memory Devices
Site-specific recombinases are enzymes that perform genetic recombination on DNA
flanked by specific recognition sites (aka recombination cassettes), resulting in either
DNA excisions or inversions (Olorunniji et al. 2016). Biologically, recombinases

�

Fig. 7 (continued) gfp flanked by loxP sites, and then excises one of the two loxP sites through the
lox511 sites (Schnütgen et al. 2003). PC, constitutive promoter. gfp, gene encoding a green
fluorescent protein. (c) An integrase-based memory device switches the sensor’s output from gfp
expression to rfp expression. The integrase and excisionase together restore the gfp expression
(Bonnet et al. 2012). rfp, gene encoding a red fluorescent protein. (d) A CRISPR-based “biological
tape recorder” system. The signals are recorded into the genomic CRISPR array (Sheth et al. 2017).
When there is no signal, only the reference DNAwill be recorded; when there are signals, the trigger
DNA will be rapidly replicated and preferentially recorded into the CRISPR array. (e) The
CAMERA recording system (Tang and Liu 2018) has two possible mechanisms: i, it uses Cas9
nucleases to record signals by shifting the ratio of two recording plasmids; ii, it uses Cas9-derived
base editors to change DNA sequences upon sensing a signal
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belong to either the tyrosine or serine recombinase classes and can be further
classified by their directionality and their permitted mode of actions (Wang et al.
2011b). For recombinases that can perform both excision and inversion, the mode of
recombination depends on the relative orientations of the recombination sites:
excision happens between aligned recombination sites and for inversion, anti-
aligned sites (Fig. 7b). Both allow implementations of memory provided that the
DNAwithin the recombination cassette is a functional biological part.

A simple memory device using DNA excision can be built by inserting a
recombination sites-flanked terminator between a constitutive promoter and a trans-
lational unit, which interrupts gene expression until its removal (Bonnet et al. 2013).
In the case of inversion, the genetic part within the cassette would be purposefully
inserted in a nonfunctional orientation, only to be restored when the recombinase is
active. In both cases, the DNA is transformed from one sustained state into another,
thereby conferring memory. Since the flanked DNA can only exist in either one of
the two states, all recombinase-based memory devices are analog to digital con-
verters. Their genetic nature also implies that the memory is heritable and would last
even if the host cell is dead (Siuti et al. 2013).

Many early synthetic memory devices were based on inversions using bidirec-
tional recombinases like the Cre/lox and FLP/FRT systems. They tended to stochas-
tically re-catalyze an inverted DNA back into the original orientation and create a
mixed population of cells in either ON or OFF states, which posed an issue to
robustness in memory (Schnütgen et al. 2003; Brophy and Voigt 2014).
Workarounds to this issue include using mutated recombination sites that drive
inversion equilibrium towards the product (Albert et al. 1995; Oberdoerffer 2003)
or configurations that would lead to the disappearance of some recombination sites
in the end state (Fig. 7b) (Schnütgen et al. 2003). The same mixed population issue
also applies to unidirectional recombinases when their expression is at intermediate
levels, but the problem could be alleviated through the use of feedback loops (Moon
et al. 2011; Brophy and Voigt 2014; Folliard et al. 2017).

Memory devices engineered from recombinase-recombination cassettes with
unidirectionality provide irreversible memories – a temporal exposure to the target
will flip the system into an irrevocable state (Siuti et al. 2013). To date, a large
number of orthogonal unidirectional recombinases have been identified, and they
allow different inputs to be remembered within the same cell (Yang et al. 2014).
They were demonstrated to record conditions in gastrointestinal tracts, as well as
pathogens in human serum and urine samples (Archer et al. 2012; Courbet et al.
2015; Mimee et al. 2015). The sequence of detection events can also be recorded in a
state machine, which assigns a unique state to every possible sequence order by
coordinating multiple unidirectional recombinases (Roquet et al. 2016).

Biosensors built with irreversible memories would be single-use commodities. In
contrast, reusable and rewritable memory devices can be constructed from
recombinase-excisionase pairs with conditional bidirectionality (Fig. 7c) (Bonnet
et al. 2012; Bonnet et al. 2013). The mechanism is illustrated using the integrase
Bxb1 gp35 and its cognate excisionase Bxb1 gp47. The integrase alone will drive
inversion towards one direction, but the direction is reversed in the presence of the
excisionase.
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CRISPR/Cas-Based Memory Devices
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-
associated (Cas) systems are bacterial immunity systems against phage infections.
Their molecular mechanisms have been intensely studied and frequently reviewed
elsewhere and so will not be covered in this section (Shalem et al. 2015; Jiang and
Doudna 2017). CRISPR/Cas systems have innate memory functions to remember
previously invaded viruses. They capture exogenous DNA from plasmids or phages
and integrate them into the genomic CRISPR arrays as spacer sequences. This
adaption process has been repurposed to yield a synthetic memory device, known
as the “biological tape recorder” (Fig. 7d) (Sheth et al. 2017). A new spacer is
incorporated into the array upon induction by a specific target, and multiple events
over time can be recorded.

The popularity of the CRISPR/Cas system, nonetheless, remains in its versatility
in performing precise DNA cutting and editing. These properties have been also
harnessed in a memory device named CAMERA (CRISPR-mediated analog multi-
event recording apparatus) (Fig. 7e) (Tang and Liu 2018). The system memorizes
signals by one of the two ways: (1) An incoming signal modulates the activity of a
DNA cleavage enzyme, which selectively cuts one of the two recording plasmids
and thus alters the ratio between the two. (2) The signal instructs Cas9-derived base
editors to modify designated DNA sequences. In both examples, the recorded
information can be retrieved by sequencing the barcoded DNA sequences or by
coupling the resulting change to an observable output.

Other Notable Memory Devices
The three types of memory devices described above were so far the most popular
ones. Nonetheless, there are two other noteworthy examples that were also demon-
strated in biosensors: (1) In a device named SCRIBE (Synthetic Cellular Recorders
Integrating Biological Events), detection events lead to productions of hybrid RNA-
ssDNA molecules that will undergo genetic recombination with the bacterial
genome, modifying sequences on the latter (Farzadfard and Lu 2014). The strength
of sensing correlates with the frequency of recombination and is therefore reflected
on a population level, specifically, the proportion of cells that carries the modifica-
tion. (2) An epigenetic and reversible memory device was constructed by DNA
methylase and DNA-binding proteins (DBP) that are sensitive to DNA methylation.
Target detection therefore triggers DNA methylation and precludes binding of the
DBP, and memory reset is carried out via degradation of the methylase (Maier et al.
2017).

Computation Modules to Integrate Signals

Most biosensors were built to detect a single input, but by receiving and processing
multiple inputs, they can be used to sense a complex condition or a global environ-
ment (Fig. 8) (Wang et al. 2013). Synthetic biology has offered numerous examples
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on biocomputation and interested readers are advised to consult references cited here
(Wang et al. 2011a; Moon et al. 2012; Wang and Buck 2014; Ma et al. 2016; Nielsen
et al. 2016; Roquet et al. 2016; Rubens et al. 2016; Xiang et al. 2018).

Signal integration is of great interest in clinical diagnosis and biotherapy, where
multiple signals define a specific disease state and determine if drugs should be
administered. To date, no genetic circuits have been developed in prokaryotic bio-
sensors to target multiple clinical biomarkers, but similar ideas have been proposed
and tested. For example, a hypothetical E. coli that would invade tumor cells would
only work when two conditions are satisfied: (1) it reaches a quorum due to
colonization and (2) detects a hypoxic environment that is typically found in tumors
(Anderson et al. 2006). The two conditions would thus require integration through
an AND gate.

Modules to Reshape Response Function

Other forms of signal processing can remodel the conventional sigmoidal response
curve to facilitate biosensor readout. By connecting a sensing module to an inco-
herent feedforward loop, a biosensor can behave as a bandpass filter and only
responds to a limited range of analyte concentrations (Peking iGEM 2013; Rubens
et al. 2016). In another example, a coherent feedforward loop successfully trans-
formed the response curve into a semilog sensing curve (Zhang et al. 2013). These
changes in response functions could be helpful when the output sensing modules are
wired to specific actuators that are not very responsive to sigmoidal inputs.

Fig. 8 Detecting an environmental condition using multi-input AND gate and cell-cell com-
munication. A three-input AND logic gate based on two HrpRS-based AND gates are separated
into two different cell strains of a consortium (Wang et al. 2013). luxI, synthase of a quorum sensing
molecule 3OC6HSL. rfp, gene encoding a red fluorescent protein
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Reporter Modules for Interfacing with Different Detection Platforms

Many biosensors were first developed using fluorescent reporters as the actuator,
which facilitate their characterization in laboratory settings. Yet employing these
biosensors in the field would be inconvenient since it must be accompanied with a
fluorescent reader. The synthetic biology community has developed a diverse col-
lection of reporters or actuators. They are standardized and so can easily substitute
the fluorescent reporters. This allows the output signals to be observed through other
means. For example, some reporter modules can convert detection events into
electrical currents measurable by electrodes (Webster et al. 2014).

Typically, colorimetric reporters are often used to allow direct observations of
sensor output by naked eyes. They include chromoproteins, some fluorescent pro-
teins, and enzymes that produce pigments or catalyze chromogenic substrates (Biran
et al. 2003; Stocker et al. 2003; Fujimoto et al. 2006; Wackwitz et al. 2008; Joshi et
al. 2009; De Mora et al. 2011; Joe et al. 2012; Shin 2012; Kotula et al. 2014; Pardee
et al. 2014; Courbet et al. 2015; Danino et al. 2015; Huang et al. 2015a; Pardee et al.
2016a; Didovyk et al. 2017; Watstein and Styczynski 2018). This could drive down
the operating costs of a biosensor because it obviates additional readout machines.

Yet, there are also a few other interesting reporters that enable biosensors to
operate in vivo: acoustic reporter genes were used to encode intracellular gas vesicles
in E. coli (Bourdeau et al. 2018). These vesicles can scatter ultrasound waves that
noninvasively penetrate living tissues and therefore lead to imaging contrast.
Another example employs a luciferase reporter: E. coli entrapped in an ingestible
micro-bio-electronic device (IMBED) can detect analytes that diffuse into their
residing chemostat chamber. The cells then respond by emitting light which can be
converted into digital signals through photodetectors. The signal can then be further
relayed to computers via Wi-Fi (Mimee et al. 2018).

Biosafety Enhancing Modules

As explained in the introduction, biosafety remains the bottleneck for field applica-
tions of prokaryotic whole-cell biosensors, and a large volume of work in synthetic
biology was dedicated to this issue. Some representative work has been selected to
illustrate various strategies in managing the biocontamination risks.

“GeneGuard” was a stable and modular system for biosafety control in E. coli
(Wright et al. 2015). Three safety modules were inserted into the genome: (1) A rich-
media compatible auxotrophy selection marker ensures that the host cell would not
survive if it leaves an industrial closed system. (2) Host-dependent origins of
replication, as well as (3) toxin-antitoxin pairs prevent propagation of episomes
that could have accidentally transferred to other organisms.

The host cells can also be programed to commit suicide after a certain retention
time in the environment. This could be achieved by putting genes encoding toxic
products under the control of a synthetic timer (Ellis et al. 2009) or counting circuits
(Friedland et al. 2009; Callura et al. 2010).
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Another method is to erect a “linguistic barrier” between the host cell and other
prokaryotes in nature (Pinheiro et al. 2012; Wright et al. 2013). The genes that are
expressed in the host cells are refactored, so they cannot be transcribed or translated
in other prokaryotes in the wild.

Conclusions and Future Directions

Prokaryotic whole-cell biosensors are suitable for a broad range of applications and
are promising alternatives to other types of sensors. With the support of synthetic
biology, the development and optimization of novel whole-cell biosensors has been
vastly accelerated. Engineering principles facilitate biosensors to be constructed
from a bottom-up approach and provide means to engineer new sensing modules
on top of the myriad available options. Through the lens of rational design,
researchers could pinpoint biological properties that limit selectivity, LOD, dynamic
range, and leakiness and apply strategies that precisely tackle each issue and improve
the overall sensing behavior of a biosensor. Finally, various parts and devices from
the synthetic biology community augment functions of biosensors in memory and
signal processing capacities, and make them easier and safer to be used in field
applications. More tools and design principles that give rise to robust and reliable
sensors will likely be discovered in the future, and they will further encourage
whole-cell biosensors to be applied in real life scenarios.

Synthetic biology alone, however, cannot solve all the problems present in whole-
cell biosensors. At the current stage, despite the fact that many prokaryotic bio-
sensors had impeccable performance in the laboratory, only a few could be com-
mercialized. There are three underlying reasons. First, the actual working
environments for the biosensors are far more complicated than their laboratory
counterparts, so requirements on LOD, selectivity, and robustness are more demand-
ing. The major solution is to subject the biosensor to multiple rounds of rigorous
tests using real environmental or clinical samples and progressively optimize their
response behavior through genetic manipulation. Approaches described in this
chapter should aid this process, but sample preprocessing steps like target purifica-
tion or concentration might be helpful complementary methods to decrease biosen-
sor LOD (Wen et al. 2017).

There is also a dearth of durable, inexpensive, and user-friendly platforms for
whole-cell biosensor storage and multiplexed sample testing. Some options are
available, but they do not keep the cells alive over long periods of time. Hydrogels,
which include alginate beads, agarose, and silica gels, can entrap prokaryotic cells
and keep them hydrated and functional for around a month (Chang and Prakash
2001; Nassif et al. 2002; Papi et al. 2005; Sharma et al. 2010; Buffi et al. 2011;
Power et al. 2011; Shin 2012; Courbet et al. 2015; Belkin et al. 2017; Wan et al.
2019). Better entrapping materials and storage conditions are needed for prolonging
the shelf life of biosensors. An alternative is to find a different chassis that is
indifferent to harsh environments. In this sense, the Gram-positive bacteria B.
subtilis are recently gaining ground. They can give physically and chemically
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resistant endospores that can be stored dry in a wide range of temperatures for years
but can still return to a vegetative state when nourished with water and nutrients
(Joshi et al. 2009; Volpetti et al. 2017). Cheap microfluidic devices have also been
developed as platforms for biosensor applications, yet they remain inconvenient for
multiplexed sample processing and on-site diagnosis (Buffi et al. 2011; Kim et al.
2016; Volpetti et al. 2017; Wan et al. 2019).

Lastly, as long as they are still alive, whole-cell prokaryotic biosensors will carry
the stigma of being potentially biohazardous when they exit laboratories. Biosafety
concerns like ecosystem disruption and antibiotic resistant gene transfer will need to
be addressed (Dana et al. 2012). Adequate intrinsic containment systems (biosafety
circuits reviewed in section “Biosafety Enhancing Modules”) and physical contain-
ment systems like bioreactive nanofibers (Tong et al. 2014) and the aforementioned
hydrogel/microfluidic device encapsulation will need to be in place for whole-cell
biosensors to be safely deployed in the field.

In recent years, cell-free systems have been proposed as a solution to circumvent
the biosafety issues associated with whole-cell biosensing. A cell-free system
consists of cell extracts or purified transcription/translation machineries mixed
with energy supplements and amino acids (Perez et al. 2016). It is cheap and easy
to produce (Kwon and Jewett 2015; Didovyk et al. 2017). A number of biosensors
using cell-free extracts have already been shown to be capable of detecting heavy
metals, pathogens, antibiotics, and viral RNA (Pellinen et al. 2004; Pardee et al.
2014, 2016a; Didovyk et al. 2017; Duyen et al. 2017; Wen et al. 2017; Ma et al.
2018). Furthermore, they could be freeze-dried on cellulose paper, which increases
their stability and portability (Pardee et al. 2014 2016b). Theoretically, any whole-
cell biosensors can be converted into this paper-based cell-free system and become
point-of-care diagnostic devices. Still, there will always be unbridgeable differences
between an in vivo intracellular environment and a cell extract, which may cause
unpredictable behavior during biosensor circuit migration. Therefore, until the
moment that all circuits can be transferred systematically and flawlessly across the
two platforms, whole-cell prokaryotic biosensors will remain a major player in the
field of biosensors.
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